Quantum-inspired Optimization Approach for Engineering Design

نویسنده

  • Leandro dos Santos Coelho
چکیده

Optimization problems are widely encountered in various fields of mechanical engineering. Sometimes such problems can be very complex due to the actual and practical nature of the objective function or the model constraints. During the history of science of computational intelligence, many evolutionary algorithms and swarm intelligence approaches were proposed having more or less success in solving various mechanical engineering optimization problems. In this context, the Particle Swarm Optimization (PSO) is a bio-inspired optimization mechanism based on the metaphor of social behavior of birds flocking and fish schooling in search for food. In PSO each member is seen as a particle, and each particle is a potential solution to the problem under analysis. In this context, each particle which moves through the space of the problem has a randomized velocity associated to it. Inspired by the classical PSO method and quantum mechanics theories, this work presents a new Quantum-behaved PSO (QPSO) approach using Gaussian probability distribution function. The simulation results demonstrate good performance of the QPSO approaches in solving a benchmark problem of tension/compression spring design.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BQIABC: A new Quantum-Inspired Artificial Bee Colony Algorithm for Binary Optimization Problems

Artificial bee colony (ABC) algorithm is a swarm intelligence optimization algorithm inspired by the intelligent behavior of honey bees when searching for food sources. The various versions of the ABC algorithm have been widely used to solve continuous and discrete optimization problems in different fields. In this paper a new binary version of the ABC algorithm inspired by quantum computing, c...

متن کامل

A Quantum Inspired Evolutionary Computational Technique with Applications to Structural Engineering Design

Abstract— A new Quantum Inspired Evolutionary Computational Technique (QIECT) is reported in this work. It is applied to a set of standard test bench problems and a few structural engineering design problems. The algorithm is a hybrid of quantum inspired evolution and real coded Genetic evolutionary simulated annealing strategies. It generates initial parents randomly and improves them using qu...

متن کامل

Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic devic...

متن کامل

Optimum Structural Design with Discrete Variables Using League Championship Algorithm

In this paper a league championship algorithm (LCA) is developed for structural optimization where the optimization variables are of discrete type and the set of the values possibly obtained by each variable is also given. LCA is a relatively new metaheuristic algorithm inspired from sport championship process. In LCA, each individual can choose to approach to or retreat from other individuals ...

متن کامل

Design Optimization for 4.1-THZ Quantum Cascade Lasers

We present an optimized design for GaAs/AlGaAs quantum cascade lasers operating at ‎‎4.1THz. This was based on a three-well active module with diagonal radiative transition. This ‎was performed by modifying the existing model structure, to reduce the parasitic anticrossings ‎‎(leakage currents) as well as the optical gain linewidth. While the gain FWHM was reduced by ‎more than 50% the gain pea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007